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ABSTRACT 
In this report we describe the module developed to complete and 
extend the existing implementation that offers optimal pricing of 
data services in a cloud DBMS. We investigate the Inverse 
Optimal pricing model problem (IOPM) aiming to estimate the 
parameters of an existing pricing scheme. Solving the Inverse 
problem requires measured values from the cloud DBMS. The 
dimensionality of the data search space poses a challenge for the 
creation of a dataset of representative values. We propose a 
method for drawing representative samples from the cloud DBMS 
adapting the Metropolis Monte Carlo algorithm and tackle the 
dimensionality problem using a theoretically optimal linear scheme 
for dimensionality reduction, Principal Component Analysis. For a 
finite data set, we solve the Inverse pricing model problem using a 
deterministic method for non-linear optimization. The solution is 
implemented as a stand-alone, full- fledged module, named IOPM 
Module, comprised by a Sampling component that adopts the 
proposed sampling method and an Optimization component that 
solves the IOPM problem. Furthermore, we demonstrate how the 
module was integrated into the existing schema. The efficiency of 
the solution to the IOPM problem is shown in an experimental 
study.  

1. INTRODUCTION 
A novel pricing scheme has been proposed for a cloud cache, 
aiming at the maximization of cloud profit. In [15], the optimal 
pricing problem has been formulated and solved, by a price-
demand model that estimates the correlations of the data services 
in a time efficient manner. External tools have been used by the 
authors in order to perform data regression of pairs of price and 
demand values that are output of a simulated cloud DBMS that has 
been developed in the DIAS laboratory. 

This project completes and extends the existing implementation in 
order to produce a full-fledged and stand-alone module for optimal 
pricing, addressing the need for efficient estimation of the 
proposed model parameters (fitting)1. There are two major 
challenges when trying to estimate the model parameters. The first 
is to obtain a representative dataset suitable for the model fitting. 
The correlations the model takes into account cause a burst in 
dimensionality of the dataset. A combination of sampling methods 
can be used to create a representative dataset and solve the 
dimensionality problem. Monte Carlo Sampling is selected in order 
to draw samples from a simulation of the cloud cache Principal 
Component Analysis is picked, with a view to transform the 
number of possibly correlated model variables into a smaller 
number of uncorrelated variables. The second challenge resides in 
the procedure that solves the parameter estimation. The estimation 
of the price-demand model parameters is translated into the IOPM 
                                                                    
1 Within this project, the terms parameter estimation and fitting 
will be used interchangeably 
 

problem. We apply optimal control theory and use data regression 
methods to solve it. The solution involves the construction of a 
sum-of-squares function of the residuals between the measured and 
the simulated data. The estimation of the true parameters is the 
values that minimize the sum-of-square function. The 
minimization of this sum-of squared function is carried out using 
numerical optimization techniques. In order to achieve the best 
possible solution to the optimization problem, we search through a 
series of solvers that are available within the optimization tools.    

1.1 Problem Motivation 
The maximization of cloud profit necessitates a price-demand 
model that enables optimal pricing of query services. A price-
demand scheme has already been designed [15] in DIAS to offer a 
feasible optimal pricing solution. The authors introduce a static 
relation between price and demand. The model proposed 
constraints on price and demand using a set of parameters. The 
model parameters are the set of values that completely characterize 
the cloud caching service. The Parameterization of the model is the 
discovery of this set of values and is crucial for the model’s 
accuracy in the prediction of price values. .  
Solving the Inverse problem of Optimal Pricing, i.e. the estimation 
of parameters from measured values of price and demand requires 
a representative subset data set of measured values. A 
representative dataset for the data services in a cloud DBMS can 
be drawn from a simulation of the cloud cache.  

The dimension of the search space for the dataset in terms of the 
dimension of the variable space grew by the modeling approach of 
the authors in [15]. In order to make the pricing model realistic, the 
authors consider the correlations of demand and prices between 
pairs of structures.  

The question then arises as to whether there is a method that one 
can use to create such a dataset when the model involves variables 
in a large number of dimensions. The answer is that in the extent of 
our knowledge, no known method exists for such purpose used in 
combination with a simulation. 
We develop a module that effectively performs parameter 
estimation and is interoperable with the existing price-demand 
model implementation. The already implemented price-demand 
model needs to be open to corrections, while its optimization is 
still in progress to achieve a flexible long-term optimization. These 
corrections will mainly address the difference between the 
estimated and the actual price influence on the demand of services. 
The estimation of the model parameters should be repeated in each 
optimization iteration, since the efficiency and flexibility of the 
solution offered by the pricing model in [15] is sensitive to the 
price adaptivity to time changes.  

1.2 Related Work 
There is significant related work in the areas of optimization used 
for fitting in various research fields. Additionally, Monte Carlo 
methods have been applied before in distributed computing, 
through a different perspective. 



Optimization has been used for Parameter estimation problems 
widely in various fields of research, from Computer Vision [16], to 
Systems Biology [4] and Telecommunications [5]. However, the 
parameter estimation problem is model specific and each case 
bears limited resemblance to another.  

Monte Carlo techniques are utilized in economic approaches for 
distributed computing. In [14], an approach is suggested for the 
utilization of idle computational resources in a heterogeneous 
cluster. The authors used concurrent Monte Carlo simulations as 
prototypical applications, to explore issues of fairness in resource 
distribution, currency as a form of priority, price equilibria and 
scaling to large systems. Although the common properties are the 
domain of usage of Monte Carlo methods, our approach utilizes 
Monte Carlo methods for random sampling of probability 
distribution functions as model inputs to produce possible 
outcomes instead of a few discrete scenarios.  

1.3 Our Proposal 
A combination of methods is applied in order to achieve the best 
possible solution to the IOPM problem There is no sampling-
fitting method that is general purpose. Although the idea that a 
single method would be best for all problems is an attractive one, it 
is in fact infeasible due to the great variety of problem domains 
and their properties. 

We extend a Monte Carlo sampling algorithm as the sampling 
strategy used to obtain a dataset from the simulation and apply 
Principal Component Analysis to diminish the dimensions of the 
obtained dataset. This dataset will be the input of measured data 
for the optimization procedure. 
We have programmed an optimization procedure that solves the 
inverse parameter estimation problem, using non-linear 
deterministic methods.   
The sampling-optimization method is implemented as one module, 
designed to be integrated with the existing implementation.  

1.4 Contributions 
This project makes the following contributions: 
IOPM module. The stand-alone module IOPM (Inverse Optimal 
Pricing Model Module) is designed to assure both the flexibility 
and the accuracy of the solution offered by the pricing model. The 
IOPM module enables: 

· The estimation of the initial parameters in the price-
demand model for a large-scale structures collection, 
through its Optimization component. 

·  The representative sampling from the structures 
population of the cloud DBMS. This is a procedure is 
performed into the Sampling component.  

· The integration of the optimal pricing solution and 
price-demand model so that it is possible to re-inject 
real demand values in the optimization process 

A data regression method. The parameter estimation cannot be 
efficient unless a representative dataset is obtained. The data 
regression method we propose extends the Metropolis Monte Carlo 
algorithm to gather samples from the simulation and combines it 
with the Principal Component Analysis procedure to reduce the 
dimensions of the extracted dataset.  
An experimental study. An experimental study is conducted to 
show the efficiency of the solution, comparing minimum error rate 
among different solvers for the parameter estimation problem. 

The rest of the report is structured as follows. Section 2 describes 
the formulation and the solution of the Inverse Optimal Pricing 
Model problem. Section 3 describes the implementation of the 
module integration into the existing schema. Section 4 presents the 
experimental study. Section 5 discusses our proposal and Section 6 
concludes this report. 

2. THE INVERSE PROBLEM OF OPTIMAL 
PRICING MODEL 
The cloud makes profit from selling its services at a price higher 
than the cost. Yet, pricing the services is a non-trivial problem 
because the competition for services leads the demand to a growth 
non-proportional to the price. A Price-demand model for the cloud 
cache [15] has been proposed, that takes into account the 
collaborative or competitive behavior of structures during query 
execution. The demand for a structure depends not only on its 
price, but also on the price of other structures. 
 Since this project coalesces the existing research by the authors of 
[15], in this section we will refer to the definitions formulated in 
[15] and are the basis of our work. We will next introduce properly 
in 2.1 the Inverse Optimal Pricing Model problem that this project 
deals with and describe the solution approach we selected. We will 
present in 2.2 a sampling method that enables the Data Regression 
of the price-demand model.  
 

2.1 Design of the IOPM Module 
2.1.1 Preliminaries 
It is assumed that data are stored in a cloud database and that cloud 
caching supports efficient query processing. In the current caching 
infrastructure the columns of the tables in the back-end database 
are cached. The cloud infrastructure provides unlimited amount of 
storage space and therefore any number of structures can be held in 
the cache. The cloud cache offers to the user query services on the 
cloud data. For each query, the user is presented with query plans 
that include cache structures, i.e. cache columns and indexes. A set 
of possible cache structures is S={S1,…,Sm}. 

The demand. The demand λs for a structure S is defined as the 
number of occurrences of the fact that S is included in the query 
plans selected for execution at time t.  

The cost. Once a structure S is built in the cache it has a one-time 
building cost Bs.  A sturcture S has a time-dependant maintenance 
cost Ms, while maintained in the cache The cost of the structure S 
from the time it is built in the cache, defined as built until it is 
discarded is: 

 (1) 

The price. The cloud makes profit charging the user for each 
structure included in a plan a price ps(t).  

The demand and price for one structure are connected in an 
ordinary differential equation as follows: 

 (2) 

In the price-demand static relation, three constant parameters 
interfere: α, β, γ. 

A correlation V matrix is defined to capture the correlations of 
demand and prices between structures. The one structure price-
demand equation was expanded to: 



 (3) 

Λ and P are the mx1 matrices of demand and prices for the 
respective structures in S and A, Β, Γ are mx1 matrices of 
parameters.  

Before proceeding any further, we would like to clarify some 
potentially confusing issues of language that arise in this combined 
approach. This is related to the words ‘parameter’ and ‘variable’, 
which are used in simulation and optimization with perhaps 
confusing meanings. In modeling and simulation parameters and 
variables are distinguished, the parameters being entities of a 
model that are either constant, under direct control or vary 
independently. Variables are entities whose values are entirely 
determined by the parameters. While in optimization these words 
are used interchangeably, the entities that are parameters and 
variables are in our case exactly the opposite: the variables of the 
price-demand model [15] are now part of the objective function 
(the function to be minimized) and the parameters to optimize 
become variables (because they are varied in the course of the 
optimization)—this is why our problem is named inverse 
problems. To avoid confusion, we will always refer to the entities 
that are parameters in the price-demand model [15] as ‘parameters’ 
and the variables in the price-demand model as ‘variables’; when 
we refer to the inverse model parameters that are being optimized, 
we call them ‘adjustable parameters’ to stress the fact that their 
values are going to be adjusted by the optimization method. We 
must also point out that the optimization literature refers to these as 
‘variables’ as they are effectively varied during the course of the 
optimization. In addition, the numerical optimization methods 
themselves can be tuned by a few parameters that are only 
involved with the way the method proceeds (e.g. step sizes, 
horizon); we will not refer to these within this project. 

2.1.2 Problem Formulation  
Mathematically, studying a system given a model that describes its 
behavior such as (3) does and trying to use the actual results of 
some measurements of the observable variables to infer the actual 
values of the model parameters is characterized as an Inverse 
Model Problem [19], named for the cloud DBMS economy 
modeling as Inverse Optimal Pricing Model (IOPM) problem. The 
choice of model parameters to be used to describe a system is 
generally not unique. A particular choice of model parameters is a 
parameterization of the system. 
Model Space It is possible to introduce an abstract set of points, a 
manifold, each point of which represents a conceivable model of 
the system. This manifold is named the model space and is denoted 
by M. Once a parameterization is chosen, with each point M of the 
model space M a set of numerical values {m1,…,mn} is associated. 
Each point M of M is named a model and represented with m.   
Data space The space of all conceivable results of the 
measurements corresponds to a data manifold, which may be 
represented with the symbol D. Any exact result of the 
measurements corresponds to a particular point D on the manifold 
D. The coordinates d={di} are the possible realizations and are 
named data vectors.  

In (3) we observe the forward problem. Solving the forward 
problem means predicting the error-free values of the observable 
variables d that correspond to the model m. The model parameters 
needed to completely describe the system are 
{m1,m2,m3}={A,B,Γ}. To obtain information on model parameters 
we have to perform some observations during an experiment, i.e. 
we have to perform a measurement of observable coordinates 
{d1

,d2}={Λ,P}. Let: 

 (4) 

The relation between d and m as exhibited in (3) is clearly not 
linear. Assume that when a measurement is completed, the 
simulation delivers a given value of d, denoted dmeas,. The data 
coordinates d represent pairs of observed values of demand over 
the set of prices of structures.,i.e. 

 (5) 

The estimation of the parameters of the price-demand model is 
achieved with the solution of the following optimization problem: 

 (6) 

subject to constraints: 
 

 

The above problem is an optimal control problem with a finite 
horizon. The state variables are the price P and the demand Λ, and 
the control variables are the parameters A, Β, Γ. The mx1 matrices 
of demand defined as Λmeas is one of the coordinates of the data 
vector.  

A full exploration of the data space is generally too expensive to 
make and creates a data vector, referred to as dobs. dobs  has 
coordinates in large dimensions for a large set of structures 
Si,i=1,…,n . We are therefore left with the possibility to construct a 
data vector, denoted as dataset, defined over a space of lower 
dimension. This curse of dimensionality means that the systematic 
process for solving (6) is really applicable only to rather small 
dimensions of the data vector coordinates. In mathematical terms, 
the problem we investigate can be stated as follows: given the m-
dimensional datavector, where i corresponds to the structure 
Si,i=1,..,n , 

, (7) 

find a lower dimensional representation of it,  

 (8) 
 with k ≤ n, that captures the content in the original data, according 
to some criterion. 

2.1.3 Problem Solution 



We need to perform effective measurement of the observable 
variables, reduce the dimensions of the dataset and utilize the 

diminished dataset as input to solve the Inverse Optimal Price 
Model problem, as formulated in 2.1.2 

The measurement of the observable coordinates is conducted in the 
cloud simulation. A representative dataset x can be drawn from the 
cloud DBMS structures population using the Metropolis algorithm, 
as will be explained in detail in 2.2.1.  

Principal component analysis (PCA) is the best, in the mean-square 
error sense, linear dimension reduction technique [10]. In essence, 
using PCA we reduce the dimension of the dataset by finding a few 
orthogonal linear combinations (the PCs) of the original 
datavectors coordinates with the largest variance.  
We have  

 (9), 
where Wk×n is the linear transformation weight matrix. 

The first PC, s1 ,is the linear combination with the largest variance. 
We have  

 (10) 

where the m-dimensional coeffcient vector w1 = (w1,1 ,…, w1,n )T 
solves 

(11) 

The popular linear programming methods cannot be applied to this 
problem due to their requirement of objective function linearality 
in terms of the adjustable parameters. Non-linear methods are thus 

to be preferred and applied once the datavectors’ dimensions is 
reduced. 

The solution of the inverse problem can be performed in a fully 
non-linear way. The problem is convex, therefore the solution is a 
global minimum. The problem of minimizing the square error as 
formulated in (6) was solved based on a deterministic method for 
non-linear optimization. The strategy used to scan the data space of 
the price-demand model is to repeat the solution of the ODEs at 
different values of the datavector.  

Three different optimization algorithms are used to solve the 
optimization problem described in (6). Two algorithms are of the 
interior point type, and one is of the active set type. These 
algorithms are known to have fundamentally different 
characteristics; for example, interior point methods follow a path 
through the interior of the feasible region while active set methods 
tend to stay at the boundaries. We utilize a solver [20] that 
provides both types of algorithm for greater flexibility in solving 
problems and allows crossover during the solution process from 
one algorithm to another. The implementation of the solution also 
provides a multistart option for promoting the computation of the 
global minimum.  
The measurement (Sampling) in the Cloud DBMS , the dimensions 
reduction of the dataset and the optimization procedure followed to 
solve the Inverse Optimal Price Model will be combined in a 
stand-alone module. The IOPM module is designed as a full-
fledged stand-alone component that can be integrated into the 
existing implementation. The module is depicted in Figure 1. The 
Cloud DBMS and the Optimal Pricing Module comprise the 
existing implementation. 

Figure 1: The IOPM Module integrated with the existing implementation 

Figure 1: The IOPM Module integrated with the existing implementation 



2.2 Method for Data Regression in the IOPM  
The effectiveness of the parameters estimation depends highly on 
the quality of the sample dataset. The regression of the Price-
Demand model (3) that represents our initial motivation was 
translated into the fitting of (6). The dataset that allows us to solve 
the optimization problem is developed in phases. A sampling 
method based on the Metropolis algorithm [21] was selected to 
gather the dataset from the simulated cloud DBMS. 

2.2.1 Selecting a Sampling Method 
Several techniques have been suggested for the extraction of a 
dataset. Researchers have previously used Sequential Importance 
Sampling(SIS) [9]. The fundamental problem in SIS though is that 
designing the required good biased distributions becomes more 
complicated as the system complexity increases, the initial 
simulation needs to be broken down into several smaller sub-
problems, to avoid the memory issues that the dimensionality of 
our problem would have otherwise caused. 
The scaling technique was used in [15] in order to obtain the 
sample dataset. This method is simple to implement and usually 
provides conservative simulation gains. Yet, this method pushes 
mass into the complementary region p>pmax which is undesirable. 

We selected the Monte Carlo Sampling method [7] for the sample 
dataset creation. Unlike the conventional uniform sampling 
methods, this method is able to select object consistent with the 
underlying distribution. It is simple, efficient and yet powerful and 
fast-convergent. Experiments were performed in [8] to examine the 
qualities of the samples by comparing their statistical properties 
and showed that the samples selected with the Monte Carlo 
Sampling are bona fide representative.    
 

2.2.2 Extending Monte Carlo Sampling in a Cloud 
DBMS 
The sampling process is divided into two phases. In Phase 1 the 
sampling component interfaces with the simulation to gather the 
observed variables dataset. We extend the Monte Carlo Sampling 
method into a new method suitable for the representative sampling 
of the Cloud DBMS. In Phase 2, the Metropolis algorithm is 
adopted to create the n-size variables sample x. In figure 2 we 
present the drawing procedure of a representative sample from the 
Cloud DBMS structures population using the Metropolis algorithm 
[21].    
Phase 1. 
At this point we describe a method to generate points in the data 
space D with a relative probability inversely proportional to the 
scaling of prices,. 

This approach requires to prepare first the system in a 
configuration rn 

 ⊆ D which we denote by o(old). This corresponds 
to a dataset including the set of prices for all structures scaled by q. 
Next we generate a new trial configuration rin by adding a small 
random displacement Δ to o(old) and we denote this by o(new). 
Since this new displacement either leads Cloud to overprice, or 
under-price structures2, we set the a weighting factor inversely 
proportional to the displacement, for each object as follows:  

                                                                    
2 Cloud is expected to pursue a 100% profit over cost. This 

translates to a 2.0 scaling. A scaling factor below 2.0 is consider 

We define:  (12) 

Offline, we generate N3 o(new) configurations to feed Phase 2 
algorithm, each one containing n datavectors. The algorithm that 
follows is repeated n times in order to sample all structures. The 
Phase 1 of the sampling method is depicted in Figure 2. 
 

Phase 2. Datavectors d are selected randomly from the dataset 
gathered in Phase 1, one after another. 
As defined in (7), each object is a datavector of the form:  
di= (λvi [pv1,…pvn]) . 
 The Metropolis sampling method guarantees that the chance of a 
datavector d being selected into the sample is strictly dependent on 
the probability of the datavector d. The algorithm is repeated for 
each structure that we wish to sample. 

(1) locate an object with the max weight W(x) 
as the first object x1 of the sample 

(2) for i from 1 to N-1 do 
(3)     randomly select a datavector d; 
(4)     compute θ=W(y)/W(xi); 
(5)     if θ>=1 then xi+1=d; 
(6)     else generate a random number R; 
(7)          if R<=θ then xi+1=d; 
(8)          else xi+1=xi; 
(9)          end if; 
(10)       end if; 
(11) end for. 

Figure 2:The Monte Carlo/Metropolis Sampling 

2.2.3 Dimensions Reduction 
In the price-demand model, we deal with the curse of 
dimensionality.  In the essence, for a given sample size, there is a 
maximum number of structure prices that each demand is 
correlated above which the demand estimation of our model will 
degrade rather than improve. For a density of n structures and n 
dimensions, the size of sample x is nn.  

One way to avoid the curse of dimensionality is to project the data 
onto a lower-dimensional space. Two approaches have been 
established [10]  to perform dimensionality reduction: 

• Feature extraction: creating a subset of new features by 
combinations of the existing features 

• Feature selection: choosing a subset of all the features 
(the ones more informative).The problem of feature 
extraction can be stated as: 

                                                                                                                  

under-pricing of  the cloud service, while a scaling factor over 
2.0 is respectively over-pricing.  

3 the N times that sampling is repeated should not be confused with 
the constant n that represents the number of structures in the 
cloud cache. 



 Given a feature space xi∈Rn find a mapping s=f(x):Rn→Rk with 
k<n such that the transformed structures vector yi∈RK preserves 
(most of) the information in Rn. 

An optimal mapping s=f(x) will be one that results in no increase 
in the minimum probability of error. In general, the optimal 
mapping s=f(x) will be a non-linear function, However, there is no 
systematic way to generate non-linear transforms. For this reason, 
feature extraction is commonly limited to linear transforms: s=Wx. 
Within the realm of linear feature extraction, we will use the 
Principal Component Analysis technique which is the oldest and 
most commonly used dimension reduction technique (also called 
the Karhunen-Loeve transform) to reduce the n dimensions of the 
sample. 
Principal Component Analysis 
PCA is theoretically the optimal linear scheme, in terms of least 
mean square error, for compressing a set of high dimensional 
vectors into a set of lower dimensional vectors. 

If a multivariate dataset is visualized as a set of coordinates in a 
high-dimensional data space (1 axis per variable), PCA supplies 
the user with a lower-dimensional picture, a "shadow" of this 
object when viewed from its  most informative viewpoint. 

In PCA, the optimal4 approximation of a random vector x∈ℜk by a 
linear combination of k (k<n) independent vectors is obtained by 
projecting the random vector x onto the eigenvectors ϕi 
corresponding to the largest eigenvalues λi of the covariance 
matrix Σx. The obtained dataset s contains objects of the form:   
si= (λvi ,[pv1,…pvn]). 

This final dataset s would be utilized as the dataset of measured 
variables in the optimization component in order to estimate the 
model parameters.  

3. INTEGRATION OF THE IOPM 
MODULE 
The IOPM module is integrated into the existing implementation, 
so that it is possible to re-inject of real demand values in the 
optimization process and in the future re-identify the price-demand 
model when needed. This section describes the research 
methodology followed in order to achieve seamless integration.  

3.1 Integration Alternative Approaches 
The current working environment is a mixture of Java, Matlab 
working under a Microsoft Platform. Matlab includes an interface 
to Java. It allows Matlab to access Java classes (one may call Java 
classes from Matlab) but not vice versa. Three alternative solutions 
exist to the extent of our knowledge, each one of which was 
attempted  in order to interface Matlab with Java: 

1. An approach based on Matlab Builder™ JA that enables 
to create Java™ classes from Matlab programs. 

2. An approach based on the Java Native Interface (JNI) 
and Matlab’s C Engine library.  

3. An approach based on the Java Runtime class.  

Approach 1. Initially Matlab Builder JA was examined because of 
its great portability and the advantage that it runs on all platforms. 
                                                                    
4optimality is defined as the minimum of the sum-square 
magnitude of the approximation error 
 

Matlab Compiler was used to build deployable components that 
make the Matlab computations accessible to the Java programs. 
The builder encrypts Matlab functions and generates a Java 
wrapper around them so that they behave just like any other Java 
class. However, once the Matlab based Java classes were 
integrated into the existing Java programs it was made obvious that 
certain Matlab objects that generated m-code (such as the tomSym 
objects of the Tomlab toolbox functions) could not be compiled by 
the Matlab compiler. 

Approach 2. With Java’s Native Interface [17], one can write a 
wrapper class for The Mathwork’s C Engine Library. Building a 
Java application that contains native libraries was proven to be 
quite cumbersome, although this method allows one to take 
advantage of the functionalities that this library provides for its use 
with C programs. Data transfer was only character and stream-
based, therefore inefficient for larger amounts of data (high 
latency, low transfer rates compared to direct memory access). A 
drawback with the Matlab Engine is that a Matlab session requires 
much memory [3] and takes more time to start than a compiled 
standalone Tomlab solution. The major drawback though of this 
method is that it is foremost platform-dependent. Different 
compilation, installation and setup routines apply to Unix-based 
systems. This would jeopardize the module’s migration in the 
future in a Unix-based system, therefore this approach was soon 
abandoned. 

3.2 Reaching Interoperability 
We selected Java Runtime class to start a new Matlab process in 
order to reach interoperability between those two technologies. 
Communication of the Java programs and the Matlab scripts is 
achieved through acquiring Matlab’s standard input and output 
streams. Through Java classes we run the set of Matlab commands 
that initiate the Matlab scripts and we retrieve the results. A 
drawback, however, is the fact that parsing of the Matlab output 
stream has to be done manually. 
Matlab can be started directly form a Java class, either on the same 
machine, or, under Unix-based systems even on another machine. 
This method is Platform-independent, required little Java code to 
be implemented, needs no additional installation procedure or 
system setup changes and will most likely work with future 
versions of Matlab. 

In the future, if we need to parse the output stream to further 
interpret or process the results in Java, we would need to find a 
way to format the contents of a variable in Matlab in a way that is 
easier to parse and possibly more efficient in transfer size.  
 

4. EXPERIMENTAL EVALUATION 
We present the experimental study for a cloud cache system that 
uses the optimal pricing solution module. 

4.1 Experimental Setup and Methodology 
Setup. The cloud cache is set up with one back-end database. The 
cache is operated under a TPCH-based workload, which consists of 
7 TPCH query templates and simulates the query evolution of a 
million SDSS-like queries against a 2.5TB back-end database 
hosted on Amazon EC2.  

We copy the setup used in [15] to evaluate the maximization of the 
cloud profit using the Price-Demand model. 



The authors in [15] selected this workload as it is more portable 
across different DBMS and the queries are tunable by using the 
query generation mechanism of the TPC-H benchmark. The 
building costs and the maintenance costs are determined using 
Amazon’s pricing model. The building cost is on average 7 orders 
of magnitude higher than the maintenance cost.  

The optimal pricing solution problem is implemented and run in 
Matlab 7.10 using the tool Tomlab [18]. 

Methodology. The initial demand of all structures is set to zero in 
order to avoid high cloud profit by solely leveraging high demand 
values. The price variable is represented as a percentage of the 
cost. The cost equation for the cloud DBMS is defined in 2.1.1 The 
initial price in each round of the simulation is scaled to 2.0 times 
the original cost, after varying the scaling factor from 0<q<10 and 
observing that the meaningful mass of results resides between 
scaling restricted to 1-3 times the original costs. 

The sampling in the cloud cache endures for 1000 rounds, which 
according to bibliography [7] is considered sufficient to gather a 
representative sample. In each round, in the sample gathered for 
the datavectors (λ, ([pv1,…pvm],vi) as described in 2.2.2 we 
represent the average values of the variables demand and price 
throughout the round, for each one of the 159 structures present in 
the simulation. In each round, prices are displaced by Δ ranging 
from [0,1.00]. At the end of the simulation, the Phase 1 collection 
of 1000 round sets, represented in a 1000x159 matrix is fed to the 
Monte Carlo sampling algorithm. The final sample is constituted of 
a matrix size 20x20, correlating the demand λi of each one of the 
20 unique structures with the principal 20 prices, as produced by 
the Principal Component Analysis. 

 

4.2 Experimental Results 
This section summarizes the experimental results 

4.2.1 Preliminary Experiments 
Initially we observed the demand for the collection of structures 
available in the cloud cache with respect to the values of prices 
when the simulation starts. The simulation runs 10 times and in the 
beginning of each round prices are scaled by a factor of 1-10 
compared to the original cost. Observing the structures’ overview 
of demand over the scaling of prices (included in Appendix Figure 
1), we concluded that the region of prices that is of interest extends 
to prices between 1 to 3 times the original cost, considering that a) 
the cloud will not under-price the services and b) when prices 
exceed 5 times the cost, only the indispensable structures are 
bought. We therefore set the base for sampling to prices at 2–times 
the original cost. In each simulation round, a random displacement 
Δ∈[0,1.00] will be applied to the base of prices, as described in 
Section 2.2.2. 

The overview of price-demand confirmed our claiming that the 
demand for a price has a dependency not only on its own price, but 
also on the price of others. As prices grow, we remark that the 
demand rises for structures that were less popular at lowest prices, 
meaning that these structures were favored against more expensive 
ones, under the assumption that their service is complimentary. 
Measuring the standard deviation in the sample gathered by Monte 
Carlo Sampling, we appreciate that prices are clustered tightly 
around their mean. The STD value does not exceed 7.7e-3, which 
is 5 orders of magnitude below the price values. 

Principal Component Analysis on the 1000x159 dataset that 
occurred from the Monte Carlo Sampling leaves 20x20 structures. 
Clustering of structures is depicted in Figure 3. Clusters 2 and 5 
represent those that contribute greatest to the demand, in a 
percentage of 89.9%. 

 
Figure 3: Principal Component Analysis 

4.2.2 Parameter Estimation Evaluation 
The reduced dataset of size 20x20 is used for the optimization 
process applied in order to estimate the model of price-demand 
parameters, as formed in 2.2.1. 

The dataset that we used considers the price correlations of 10 
structures, restricted to a size 10x10 by memory limitations. The 
20x20 dataset required iterations that exceeded 400 which was the 
upper limit of our system. In the best case the optimization 
converged to a solution with an error rate of 2.2017e-12, when 
optimization was employed for 100 iterations, using various 
solvers in Tomlab. The IOMP problem parameters 
{m1,m2,m3}={A,B,Γ} were estimated according to this 
optimization. 

The efficiency of the optimization process depends highly on the 
choice of the initial values and the bounding of the solution. The 
final estimation occurred after fine tuning of the initial values and 
might be subject of further refinement. The first phase of the 
optimization begins with guesses of all parameter values and uses 
these to solve for the parameters of the corresponding production 
term. The second phase takes these estimates to improve the prior 
parameter guesses. The phases are iterated until a solution is found 
or the process is terminated for other reasons.  

Different solvers were tested in the optimization component. All 
algorithms attempt to find a local optimum. The algorithms in the 
solvers CONOPT [22] and SNOPT [23] are based on fairly 
different mathematical algorithms, and they behave differently on 
most models. This means that while CONOPT is superior for some 
models, SNOPT will be superior for others. SNOPT is considered 
ideal for models few nonlinearities outside the objective function 
and was therefore a reasonable choice.   

Figure 4 depicts the optimization results with solver KNITRO, 
short for "Nonlinear Interior point Trust Region Optimization" 
[20], which was selected upon comparison with other solvers. This 
is a solver designed for large problems with dimensions running 
into the hundred thousand, highly regarded for its robustness and 
efficiency, particularly in nonlinear optimization problems. 



The results of the comparison are presented in Table 1. In Figure 5 
we provide a graphical comparison of the solvers we tested. 
 

 
Figure 4: Optimization Process with KNITRO solver 

 

 
Figure 5: Optimization with solvers (a) CONOPT , (b) SNOPT 
 

Table 1: Solvers Comparison on Parameters Estimation 
Solver KNITRO SNOPT CONOPT 

Error rate 2.2017e-12 8.5462e-005 4.849243e+003 

 

5. DISCUSSION 
The implementation of this project depends greatly on Tomlab 
Matlab Toolbox, which was used under evaluation license. The 
license had to be renewed every 21 days, therefore the 
programming workflow was interrupted quite many times. The 
implementation of the Sampling component of IOPM represented a 
bottleneck for the project, as the Optimization component of IOPM 
although implemented early enough, could only be tested when the 
dataset was prepared. Finally, the system restrictions posed the 
biggest obstacles to this effort, underlining the necessity to migrate 
the module to the Cloud Cluster in order to evaluate its 
performance on large-scale data. 

6. CONCLUSIONS 
The IOPM module includes a stand-alone module that expands the 
underlying pricing-scheme and is integrated with the optimal 
pricing solution with the price-demand model. We presented the 
IOPM problem formulation and solution through non-linear 
optimization procedure. We described the method adopted to draw 
representative samples from the cloud DMBS in order to construct 
a dataset suitable for fitting and perform Data Regression. We 

further demonstrated how the module was integrated into the 
existing implementation. Our short-term goal is to elaborate on the 
parameter estimation under a high-performance platform that will 
enable a large-scale optimization process.  
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8. APPENDIX 

 
Appendix Figure 1: Price-Demand overview for all structures 

 


