
Parameter estimation of price-demand model for cloud data services
Sofia Kyriakopoulou

École Polytechnique Fédérale de Lausanne
1015 Lausanne VD, Switzerland

sofia.kyriakopoulou@epfl.ch

ABSTRACT
In this report we describe the module developed to complete and
extend the existing implementation that offers optimal pricing of
data services in a cloud DBMS. We investigate the Inverse
Optimal pricing model problem (IOPM) aiming to estimate the
parameters of an existing pricing scheme. Solving the Inverse
problem requires measured values from the cloud DBMS. The
dimensionality of the data search space poses a challenge for the
creation of a dataset of representative values. We propose a
method for drawing representative samples from the cloud DBMS
adapting the Metropolis Monte Carlo algorithm and tackle the
dimensionality problem using a theoretically optimal linear scheme
for dimensionality reduction, Principal Component Analysis. For a
finite data set, we solve the Inverse pricing model problem using a
deterministic method for non-linear optimization. The solution is
implemented as a stand-alone, full- fledged module, named IOPM
Module, comprised by a Sampling component that adopts the
proposed sampling method and an Optimization component that
solves the IOPM problem. Furthermore, we demonstrate how the
module was integrated into the existing schema. The efficiency of
the solution to the IOPM problem is shown in an experimental
study.

1. INTRODUCTION
A novel pricing scheme has been proposed for a cloud cache,
aiming at the maximization of cloud profit. In [15], the optimal
pricing problem has been formulated and solved, by a price-
demand model that estimates the correlations of the data services
in a time efficient manner. External tools have been used by the
authors in order to perform data regression of pairs of price and
demand values that are output of a simulated cloud DBMS that has
been developed in the DIAS laboratory.

This project completes and extends the existing implementation in
order to produce a full-fledged and stand-alone module for optimal
pricing, addressing the need for efficient estimation of the
proposed model parameters (fitting)1. There are two major
challenges when trying to estimate the model parameters. The first
is to obtain a representative dataset suitable for the model fitting.
The correlations the model takes into account cause a burst in
dimensionality of the dataset. A combination of sampling methods
can be used to create a representative dataset and solve the
dimensionality problem. Monte Carlo Sampling is selected in order
to draw samples from a simulation of the cloud cache Principal
Component Analysis is picked, with a view to transform the
number of possibly correlated model variables into a smaller
number of uncorrelated variables. The second challenge resides in
the procedure that solves the parameter estimation. The estimation
of the price-demand model parameters is translated into the IOPM

1 Within this project, the terms parameter estimation and fitting
will be used interchangeably

problem. We apply optimal control theory and use data regression
methods to solve it. The solution involves the construction of a
sum-of-squares function of the residuals between the measured and
the simulated data. The estimation of the true parameters is the
values that minimize the sum-of-square function. The
minimization of this sum-of squared function is carried out using
numerical optimization techniques. In order to achieve the best
possible solution to the optimization problem, we search through a
series of solvers that are available within the optimization tools.

1.1 Problem Motivation
The maximization of cloud profit necessitates a price-demand
model that enables optimal pricing of query services. A price-
demand scheme has already been designed [15] in DIAS to offer a
feasible optimal pricing solution. The authors introduce a static
relation between price and demand. The model proposed
constraints on price and demand using a set of parameters. The
model parameters are the set of values that completely characterize
the cloud caching service. The Parameterization of the model is the
discovery of this set of values and is crucial for the model’s
accuracy in the prediction of price values. .
Solving the Inverse problem of Optimal Pricing, i.e. the estimation
of parameters from measured values of price and demand requires
a representative subset data set of measured values. A
representative dataset for the data services in a cloud DBMS can
be drawn from a simulation of the cloud cache.

The dimension of the search space for the dataset in terms of the
dimension of the variable space grew by the modeling approach of
the authors in [15]. In order to make the pricing model realistic, the
authors consider the correlations of demand and prices between
pairs of structures.

The question then arises as to whether there is a method that one
can use to create such a dataset when the model involves variables
in a large number of dimensions. The answer is that in the extent of
our knowledge, no known method exists for such purpose used in
combination with a simulation.
We develop a module that effectively performs parameter
estimation and is interoperable with the existing price-demand
model implementation. The already implemented price-demand
model needs to be open to corrections, while its optimization is
still in progress to achieve a flexible long-term optimization. These
corrections will mainly address the difference between the
estimated and the actual price influence on the demand of services.
The estimation of the model parameters should be repeated in each
optimization iteration, since the efficiency and flexibility of the
solution offered by the pricing model in [15] is sensitive to the
price adaptivity to time changes.

1.2 Related Work
There is significant related work in the areas of optimization used
for fitting in various research fields. Additionally, Monte Carlo
methods have been applied before in distributed computing,
through a different perspective.

Optimization has been used for Parameter estimation problems
widely in various fields of research, from Computer Vision [16], to
Systems Biology [4] and Telecommunications [5]. However, the
parameter estimation problem is model specific and each case
bears limited resemblance to another.

Monte Carlo techniques are utilized in economic approaches for
distributed computing. In [14], an approach is suggested for the
utilization of idle computational resources in a heterogeneous
cluster. The authors used concurrent Monte Carlo simulations as
prototypical applications, to explore issues of fairness in resource
distribution, currency as a form of priority, price equilibria and
scaling to large systems. Although the common properties are the
domain of usage of Monte Carlo methods, our approach utilizes
Monte Carlo methods for random sampling of probability
distribution functions as model inputs to produce possible
outcomes instead of a few discrete scenarios.

1.3 Our Proposal
A combination of methods is applied in order to achieve the best
possible solution to the IOPM problem There is no sampling-
fitting method that is general purpose. Although the idea that a
single method would be best for all problems is an attractive one, it
is in fact infeasible due to the great variety of problem domains
and their properties.

We extend a Monte Carlo sampling algorithm as the sampling
strategy used to obtain a dataset from the simulation and apply
Principal Component Analysis to diminish the dimensions of the
obtained dataset. This dataset will be the input of measured data
for the optimization procedure.
We have programmed an optimization procedure that solves the
inverse parameter estimation problem, using non-linear
deterministic methods.
The sampling-optimization method is implemented as one module,
designed to be integrated with the existing implementation.

1.4 Contributions
This project makes the following contributions:
IOPM module. The stand-alone module IOPM (Inverse Optimal
Pricing Model Module) is designed to assure both the flexibility
and the accuracy of the solution offered by the pricing model. The
IOPM module enables:

· The estimation of the initial parameters in the price-
demand model for a large-scale structures collection,
through its Optimization component.

· The representative sampling from the structures
population of the cloud DBMS. This is a procedure is
performed into the Sampling component.

· The integration of the optimal pricing solution and
price-demand model so that it is possible to re-inject
real demand values in the optimization process

A data regression method. The parameter estimation cannot be
efficient unless a representative dataset is obtained. The data
regression method we propose extends the Metropolis Monte Carlo
algorithm to gather samples from the simulation and combines it
with the Principal Component Analysis procedure to reduce the
dimensions of the extracted dataset.
An experimental study. An experimental study is conducted to
show the efficiency of the solution, comparing minimum error rate
among different solvers for the parameter estimation problem.

The rest of the report is structured as follows. Section 2 describes
the formulation and the solution of the Inverse Optimal Pricing
Model problem. Section 3 describes the implementation of the
module integration into the existing schema. Section 4 presents the
experimental study. Section 5 discusses our proposal and Section 6
concludes this report.

2. THE INVERSE PROBLEM OF OPTIMAL
PRICING MODEL
The cloud makes profit from selling its services at a price higher
than the cost. Yet, pricing the services is a non-trivial problem
because the competition for services leads the demand to a growth
non-proportional to the price. A Price-demand model for the cloud
cache [15] has been proposed, that takes into account the
collaborative or competitive behavior of structures during query
execution. The demand for a structure depends not only on its
price, but also on the price of other structures.
 Since this project coalesces the existing research by the authors of
[15], in this section we will refer to the definitions formulated in
[15] and are the basis of our work. We will next introduce properly
in 2.1 the Inverse Optimal Pricing Model problem that this project
deals with and describe the solution approach we selected. We will
present in 2.2 a sampling method that enables the Data Regression
of the price-demand model.

2.1 Design of the IOPM Module
2.1.1 Preliminaries
It is assumed that data are stored in a cloud database and that cloud
caching supports efficient query processing. In the current caching
infrastructure the columns of the tables in the back-end database
are cached. The cloud infrastructure provides unlimited amount of
storage space and therefore any number of structures can be held in
the cache. The cloud cache offers to the user query services on the
cloud data. For each query, the user is presented with query plans
that include cache structures, i.e. cache columns and indexes. A set
of possible cache structures is S={S1,…,Sm}.

The demand. The demand λs for a structure S is defined as the
number of occurrences of the fact that S is included in the query
plans selected for execution at time t.

The cost. Once a structure S is built in the cache it has a one-time
building cost Bs. A sturcture S has a time-dependant maintenance
cost Ms, while maintained in the cache The cost of the structure S
from the time it is built in the cache, defined as built until it is
discarded is:

 (1)

The price. The cloud makes profit charging the user for each
structure included in a plan a price ps(t).

The demand and price for one structure are connected in an
ordinary differential equation as follows:

 (2)

In the price-demand static relation, three constant parameters
interfere: α, β, γ.

A correlation V matrix is defined to capture the correlations of
demand and prices between structures. The one structure price-
demand equation was expanded to:

 (3)

Λ and P are the mx1 matrices of demand and prices for the
respective structures in S and A, Β, Γ are mx1 matrices of
parameters.

Before proceeding any further, we would like to clarify some
potentially confusing issues of language that arise in this combined
approach. This is related to the words ‘parameter’ and ‘variable’,
which are used in simulation and optimization with perhaps
confusing meanings. In modeling and simulation parameters and
variables are distinguished, the parameters being entities of a
model that are either constant, under direct control or vary
independently. Variables are entities whose values are entirely
determined by the parameters. While in optimization these words
are used interchangeably, the entities that are parameters and
variables are in our case exactly the opposite: the variables of the
price-demand model [15] are now part of the objective function
(the function to be minimized) and the parameters to optimize
become variables (because they are varied in the course of the
optimization)—this is why our problem is named inverse
problems. To avoid confusion, we will always refer to the entities
that are parameters in the price-demand model [15] as ‘parameters’
and the variables in the price-demand model as ‘variables’; when
we refer to the inverse model parameters that are being optimized,
we call them ‘adjustable parameters’ to stress the fact that their
values are going to be adjusted by the optimization method. We
must also point out that the optimization literature refers to these as
‘variables’ as they are effectively varied during the course of the
optimization. In addition, the numerical optimization methods
themselves can be tuned by a few parameters that are only
involved with the way the method proceeds (e.g. step sizes,
horizon); we will not refer to these within this project.

2.1.2 Problem Formulation
Mathematically, studying a system given a model that describes its
behavior such as (3) does and trying to use the actual results of
some measurements of the observable variables to infer the actual
values of the model parameters is characterized as an Inverse
Model Problem [19], named for the cloud DBMS economy
modeling as Inverse Optimal Pricing Model (IOPM) problem. The
choice of model parameters to be used to describe a system is
generally not unique. A particular choice of model parameters is a
parameterization of the system.
Model Space It is possible to introduce an abstract set of points, a
manifold, each point of which represents a conceivable model of
the system. This manifold is named the model space and is denoted
by M. Once a parameterization is chosen, with each point M of the
model space M a set of numerical values {m1,…,mn} is associated.
Each point M of M is named a model and represented with m.
Data space The space of all conceivable results of the
measurements corresponds to a data manifold, which may be
represented with the symbol D. Any exact result of the
measurements corresponds to a particular point D on the manifold
D. The coordinates d={di} are the possible realizations and are
named data vectors.

In (3) we observe the forward problem. Solving the forward
problem means predicting the error-free values of the observable
variables d that correspond to the model m. The model parameters
needed to completely describe the system are
{m1,m2,m3}={A,B,Γ}. To obtain information on model parameters
we have to perform some observations during an experiment, i.e.
we have to perform a measurement of observable coordinates
{d1

,d2}={Λ,P}. Let:

 (4)

The relation between d and m as exhibited in (3) is clearly not
linear. Assume that when a measurement is completed, the
simulation delivers a given value of d, denoted dmeas,. The data
coordinates d represent pairs of observed values of demand over
the set of prices of structures.,i.e.

 (5)

The estimation of the parameters of the price-demand model is
achieved with the solution of the following optimization problem:

 (6)

subject to constraints:

The above problem is an optimal control problem with a finite
horizon. The state variables are the price P and the demand Λ, and
the control variables are the parameters A, Β, Γ. The mx1 matrices
of demand defined as Λmeas is one of the coordinates of the data
vector.

A full exploration of the data space is generally too expensive to
make and creates a data vector, referred to as dobs. dobs has
coordinates in large dimensions for a large set of structures
Si,i=1,…,n . We are therefore left with the possibility to construct a
data vector, denoted as dataset, defined over a space of lower
dimension. This curse of dimensionality means that the systematic
process for solving (6) is really applicable only to rather small
dimensions of the data vector coordinates. In mathematical terms,
the problem we investigate can be stated as follows: given the m-
dimensional datavector, where i corresponds to the structure
Si,i=1,..,n ,

, (7)

find a lower dimensional representation of it,

 (8)
 with k ≤ n, that captures the content in the original data, according
to some criterion.

2.1.3 Problem Solution

We need to perform effective measurement of the observable
variables, reduce the dimensions of the dataset and utilize the

diminished dataset as input to solve the Inverse Optimal Price
Model problem, as formulated in 2.1.2

The measurement of the observable coordinates is conducted in the
cloud simulation. A representative dataset x can be drawn from the
cloud DBMS structures population using the Metropolis algorithm,
as will be explained in detail in 2.2.1.

Principal component analysis (PCA) is the best, in the mean-square
error sense, linear dimension reduction technique [10]. In essence,
using PCA we reduce the dimension of the dataset by finding a few
orthogonal linear combinations (the PCs) of the original
datavectors coordinates with the largest variance.
We have

 (9),
where Wk×n is the linear transformation weight matrix.

The first PC, s1 ,is the linear combination with the largest variance.
We have

 (10)

where the m-dimensional coeffcient vector w1 = (w1,1 ,…, w1,n)T
solves

(11)

The popular linear programming methods cannot be applied to this
problem due to their requirement of objective function linearality
in terms of the adjustable parameters. Non-linear methods are thus

to be preferred and applied once the datavectors’ dimensions is
reduced.

The solution of the inverse problem can be performed in a fully
non-linear way. The problem is convex, therefore the solution is a
global minimum. The problem of minimizing the square error as
formulated in (6) was solved based on a deterministic method for
non-linear optimization. The strategy used to scan the data space of
the price-demand model is to repeat the solution of the ODEs at
different values of the datavector.

Three different optimization algorithms are used to solve the
optimization problem described in (6). Two algorithms are of the
interior point type, and one is of the active set type. These
algorithms are known to have fundamentally different
characteristics; for example, interior point methods follow a path
through the interior of the feasible region while active set methods
tend to stay at the boundaries. We utilize a solver [20] that
provides both types of algorithm for greater flexibility in solving
problems and allows crossover during the solution process from
one algorithm to another. The implementation of the solution also
provides a multistart option for promoting the computation of the
global minimum.
The measurement (Sampling) in the Cloud DBMS , the dimensions
reduction of the dataset and the optimization procedure followed to
solve the Inverse Optimal Price Model will be combined in a
stand-alone module. The IOPM module is designed as a full-
fledged stand-alone component that can be integrated into the
existing implementation. The module is depicted in Figure 1. The
Cloud DBMS and the Optimal Pricing Module comprise the
existing implementation.

Figure 1: The IOPM Module integrated with the existing implementation

Figure 1: The IOPM Module integrated with the existing implementation

2.2 Method for Data Regression in the IOPM
The effectiveness of the parameters estimation depends highly on
the quality of the sample dataset. The regression of the Price-
Demand model (3) that represents our initial motivation was
translated into the fitting of (6). The dataset that allows us to solve
the optimization problem is developed in phases. A sampling
method based on the Metropolis algorithm [21] was selected to
gather the dataset from the simulated cloud DBMS.

2.2.1 Selecting a Sampling Method
Several techniques have been suggested for the extraction of a
dataset. Researchers have previously used Sequential Importance
Sampling(SIS) [9]. The fundamental problem in SIS though is that
designing the required good biased distributions becomes more
complicated as the system complexity increases, the initial
simulation needs to be broken down into several smaller sub-
problems, to avoid the memory issues that the dimensionality of
our problem would have otherwise caused.
The scaling technique was used in [15] in order to obtain the
sample dataset. This method is simple to implement and usually
provides conservative simulation gains. Yet, this method pushes
mass into the complementary region p>pmax which is undesirable.

We selected the Monte Carlo Sampling method [7] for the sample
dataset creation. Unlike the conventional uniform sampling
methods, this method is able to select object consistent with the
underlying distribution. It is simple, efficient and yet powerful and
fast-convergent. Experiments were performed in [8] to examine the
qualities of the samples by comparing their statistical properties
and showed that the samples selected with the Monte Carlo
Sampling are bona fide representative.

2.2.2 Extending Monte Carlo Sampling in a Cloud
DBMS
The sampling process is divided into two phases. In Phase 1 the
sampling component interfaces with the simulation to gather the
observed variables dataset. We extend the Monte Carlo Sampling
method into a new method suitable for the representative sampling
of the Cloud DBMS. In Phase 2, the Metropolis algorithm is
adopted to create the n-size variables sample x. In figure 2 we
present the drawing procedure of a representative sample from the
Cloud DBMS structures population using the Metropolis algorithm
[21].
Phase 1.
At this point we describe a method to generate points in the data
space D with a relative probability inversely proportional to the
scaling of prices,.

This approach requires to prepare first the system in a
configuration rn

 ⊆ D which we denote by o(old). This corresponds
to a dataset including the set of prices for all structures scaled by q.
Next we generate a new trial configuration rin by adding a small
random displacement Δ to o(old) and we denote this by o(new).
Since this new displacement either leads Cloud to overprice, or
under-price structures2, we set the a weighting factor inversely
proportional to the displacement, for each object as follows:

2 Cloud is expected to pursue a 100% profit over cost. This

translates to a 2.0 scaling. A scaling factor below 2.0 is consider

We define: (12)

Offline, we generate N3 o(new) configurations to feed Phase 2
algorithm, each one containing n datavectors. The algorithm that
follows is repeated n times in order to sample all structures. The
Phase 1 of the sampling method is depicted in Figure 2.

Phase 2. Datavectors d are selected randomly from the dataset
gathered in Phase 1, one after another.
As defined in (7), each object is a datavector of the form:
di= (λvi [pv1,…pvn]) .
 The Metropolis sampling method guarantees that the chance of a
datavector d being selected into the sample is strictly dependent on
the probability of the datavector d. The algorithm is repeated for
each structure that we wish to sample.

(1) locate an object with the max weight W(x)
as the first object x1 of the sample

(2) for i from 1 to N-1 do
(3) randomly select a datavector d;
(4) compute θ=W(y)/W(xi);
(5) if θ>=1 then xi+1=d;
(6) else generate a random number R;
(7) if R<=θ then xi+1=d;
(8) else xi+1=xi;
(9) end if;
(10) end if;
(11) end for.

Figure 2:The Monte Carlo/Metropolis Sampling

2.2.3 Dimensions Reduction
In the price-demand model, we deal with the curse of
dimensionality. In the essence, for a given sample size, there is a
maximum number of structure prices that each demand is
correlated above which the demand estimation of our model will
degrade rather than improve. For a density of n structures and n
dimensions, the size of sample x is nn.

One way to avoid the curse of dimensionality is to project the data
onto a lower-dimensional space. Two approaches have been
established [10] to perform dimensionality reduction:

• Feature extraction: creating a subset of new features by
combinations of the existing features

• Feature selection: choosing a subset of all the features
(the ones more informative).The problem of feature
extraction can be stated as:

under-pricing of the cloud service, while a scaling factor over
2.0 is respectively over-pricing.

3 the N times that sampling is repeated should not be confused with
the constant n that represents the number of structures in the
cloud cache.

 Given a feature space xi∈Rn find a mapping s=f(x):Rn→Rk with
k<n such that the transformed structures vector yi∈RK preserves
(most of) the information in Rn.

An optimal mapping s=f(x) will be one that results in no increase
in the minimum probability of error. In general, the optimal
mapping s=f(x) will be a non-linear function, However, there is no
systematic way to generate non-linear transforms. For this reason,
feature extraction is commonly limited to linear transforms: s=Wx.
Within the realm of linear feature extraction, we will use the
Principal Component Analysis technique which is the oldest and
most commonly used dimension reduction technique (also called
the Karhunen-Loeve transform) to reduce the n dimensions of the
sample.
Principal Component Analysis
PCA is theoretically the optimal linear scheme, in terms of least
mean square error, for compressing a set of high dimensional
vectors into a set of lower dimensional vectors.

If a multivariate dataset is visualized as a set of coordinates in a
high-dimensional data space (1 axis per variable), PCA supplies
the user with a lower-dimensional picture, a "shadow" of this
object when viewed from its most informative viewpoint.

In PCA, the optimal4 approximation of a random vector x∈ℜk by a
linear combination of k (k<n) independent vectors is obtained by
projecting the random vector x onto the eigenvectors ϕi
corresponding to the largest eigenvalues λi of the covariance
matrix Σx. The obtained dataset s contains objects of the form:
si= (λvi ,[pv1,…pvn]).

This final dataset s would be utilized as the dataset of measured
variables in the optimization component in order to estimate the
model parameters.

3. INTEGRATION OF THE IOPM
MODULE
The IOPM module is integrated into the existing implementation,
so that it is possible to re-inject of real demand values in the
optimization process and in the future re-identify the price-demand
model when needed. This section describes the research
methodology followed in order to achieve seamless integration.

3.1 Integration Alternative Approaches
The current working environment is a mixture of Java, Matlab
working under a Microsoft Platform. Matlab includes an interface
to Java. It allows Matlab to access Java classes (one may call Java
classes from Matlab) but not vice versa. Three alternative solutions
exist to the extent of our knowledge, each one of which was
attempted in order to interface Matlab with Java:

1. An approach based on Matlab Builder™ JA that enables
to create Java™ classes from Matlab programs.

2. An approach based on the Java Native Interface (JNI)
and Matlab’s C Engine library.

3. An approach based on the Java Runtime class.

Approach 1. Initially Matlab Builder JA was examined because of
its great portability and the advantage that it runs on all platforms.

4optimality is defined as the minimum of the sum-square
magnitude of the approximation error

Matlab Compiler was used to build deployable components that
make the Matlab computations accessible to the Java programs.
The builder encrypts Matlab functions and generates a Java
wrapper around them so that they behave just like any other Java
class. However, once the Matlab based Java classes were
integrated into the existing Java programs it was made obvious that
certain Matlab objects that generated m-code (such as the tomSym
objects of the Tomlab toolbox functions) could not be compiled by
the Matlab compiler.

Approach 2. With Java’s Native Interface [17], one can write a
wrapper class for The Mathwork’s C Engine Library. Building a
Java application that contains native libraries was proven to be
quite cumbersome, although this method allows one to take
advantage of the functionalities that this library provides for its use
with C programs. Data transfer was only character and stream-
based, therefore inefficient for larger amounts of data (high
latency, low transfer rates compared to direct memory access). A
drawback with the Matlab Engine is that a Matlab session requires
much memory [3] and takes more time to start than a compiled
standalone Tomlab solution. The major drawback though of this
method is that it is foremost platform-dependent. Different
compilation, installation and setup routines apply to Unix-based
systems. This would jeopardize the module’s migration in the
future in a Unix-based system, therefore this approach was soon
abandoned.

3.2 Reaching Interoperability
We selected Java Runtime class to start a new Matlab process in
order to reach interoperability between those two technologies.
Communication of the Java programs and the Matlab scripts is
achieved through acquiring Matlab’s standard input and output
streams. Through Java classes we run the set of Matlab commands
that initiate the Matlab scripts and we retrieve the results. A
drawback, however, is the fact that parsing of the Matlab output
stream has to be done manually.
Matlab can be started directly form a Java class, either on the same
machine, or, under Unix-based systems even on another machine.
This method is Platform-independent, required little Java code to
be implemented, needs no additional installation procedure or
system setup changes and will most likely work with future
versions of Matlab.

In the future, if we need to parse the output stream to further
interpret or process the results in Java, we would need to find a
way to format the contents of a variable in Matlab in a way that is
easier to parse and possibly more efficient in transfer size.

4. EXPERIMENTAL EVALUATION
We present the experimental study for a cloud cache system that
uses the optimal pricing solution module.

4.1 Experimental Setup and Methodology
Setup. The cloud cache is set up with one back-end database. The
cache is operated under a TPCH-based workload, which consists of
7 TPCH query templates and simulates the query evolution of a
million SDSS-like queries against a 2.5TB back-end database
hosted on Amazon EC2.

We copy the setup used in [15] to evaluate the maximization of the
cloud profit using the Price-Demand model.

The authors in [15] selected this workload as it is more portable
across different DBMS and the queries are tunable by using the
query generation mechanism of the TPC-H benchmark. The
building costs and the maintenance costs are determined using
Amazon’s pricing model. The building cost is on average 7 orders
of magnitude higher than the maintenance cost.

The optimal pricing solution problem is implemented and run in
Matlab 7.10 using the tool Tomlab [18].

Methodology. The initial demand of all structures is set to zero in
order to avoid high cloud profit by solely leveraging high demand
values. The price variable is represented as a percentage of the
cost. The cost equation for the cloud DBMS is defined in 2.1.1 The
initial price in each round of the simulation is scaled to 2.0 times
the original cost, after varying the scaling factor from 0<q<10 and
observing that the meaningful mass of results resides between
scaling restricted to 1-3 times the original costs.

The sampling in the cloud cache endures for 1000 rounds, which
according to bibliography [7] is considered sufficient to gather a
representative sample. In each round, in the sample gathered for
the datavectors (λ, ([pv1,…pvm],vi) as described in 2.2.2 we
represent the average values of the variables demand and price
throughout the round, for each one of the 159 structures present in
the simulation. In each round, prices are displaced by Δ ranging
from [0,1.00]. At the end of the simulation, the Phase 1 collection
of 1000 round sets, represented in a 1000x159 matrix is fed to the
Monte Carlo sampling algorithm. The final sample is constituted of
a matrix size 20x20, correlating the demand λi of each one of the
20 unique structures with the principal 20 prices, as produced by
the Principal Component Analysis.

4.2 Experimental Results
This section summarizes the experimental results

4.2.1 Preliminary Experiments
Initially we observed the demand for the collection of structures
available in the cloud cache with respect to the values of prices
when the simulation starts. The simulation runs 10 times and in the
beginning of each round prices are scaled by a factor of 1-10
compared to the original cost. Observing the structures’ overview
of demand over the scaling of prices (included in Appendix Figure
1), we concluded that the region of prices that is of interest extends
to prices between 1 to 3 times the original cost, considering that a)
the cloud will not under-price the services and b) when prices
exceed 5 times the cost, only the indispensable structures are
bought. We therefore set the base for sampling to prices at 2–times
the original cost. In each simulation round, a random displacement
Δ∈[0,1.00] will be applied to the base of prices, as described in
Section 2.2.2.

The overview of price-demand confirmed our claiming that the
demand for a price has a dependency not only on its own price, but
also on the price of others. As prices grow, we remark that the
demand rises for structures that were less popular at lowest prices,
meaning that these structures were favored against more expensive
ones, under the assumption that their service is complimentary.
Measuring the standard deviation in the sample gathered by Monte
Carlo Sampling, we appreciate that prices are clustered tightly
around their mean. The STD value does not exceed 7.7e-3, which
is 5 orders of magnitude below the price values.

Principal Component Analysis on the 1000x159 dataset that
occurred from the Monte Carlo Sampling leaves 20x20 structures.
Clustering of structures is depicted in Figure 3. Clusters 2 and 5
represent those that contribute greatest to the demand, in a
percentage of 89.9%.

Figure 3: Principal Component Analysis

4.2.2 Parameter Estimation Evaluation
The reduced dataset of size 20x20 is used for the optimization
process applied in order to estimate the model of price-demand
parameters, as formed in 2.2.1.

The dataset that we used considers the price correlations of 10
structures, restricted to a size 10x10 by memory limitations. The
20x20 dataset required iterations that exceeded 400 which was the
upper limit of our system. In the best case the optimization
converged to a solution with an error rate of 2.2017e-12, when
optimization was employed for 100 iterations, using various
solvers in Tomlab. The IOMP problem parameters
{m1,m2,m3}={A,B,Γ} were estimated according to this
optimization.

The efficiency of the optimization process depends highly on the
choice of the initial values and the bounding of the solution. The
final estimation occurred after fine tuning of the initial values and
might be subject of further refinement. The first phase of the
optimization begins with guesses of all parameter values and uses
these to solve for the parameters of the corresponding production
term. The second phase takes these estimates to improve the prior
parameter guesses. The phases are iterated until a solution is found
or the process is terminated for other reasons.

Different solvers were tested in the optimization component. All
algorithms attempt to find a local optimum. The algorithms in the
solvers CONOPT [22] and SNOPT [23] are based on fairly
different mathematical algorithms, and they behave differently on
most models. This means that while CONOPT is superior for some
models, SNOPT will be superior for others. SNOPT is considered
ideal for models few nonlinearities outside the objective function
and was therefore a reasonable choice.

Figure 4 depicts the optimization results with solver KNITRO,
short for "Nonlinear Interior point Trust Region Optimization"
[20], which was selected upon comparison with other solvers. This
is a solver designed for large problems with dimensions running
into the hundred thousand, highly regarded for its robustness and
efficiency, particularly in nonlinear optimization problems.

The results of the comparison are presented in Table 1. In Figure 5
we provide a graphical comparison of the solvers we tested.

Figure 4: Optimization Process with KNITRO solver

Figure 5: Optimization with solvers (a) CONOPT , (b) SNOPT

Table 1: Solvers Comparison on Parameters Estimation
Solver KNITRO SNOPT CONOPT

Error rate 2.2017e-12 8.5462e-005 4.849243e+003

5. DISCUSSION
The implementation of this project depends greatly on Tomlab
Matlab Toolbox, which was used under evaluation license. The
license had to be renewed every 21 days, therefore the
programming workflow was interrupted quite many times. The
implementation of the Sampling component of IOPM represented a
bottleneck for the project, as the Optimization component of IOPM
although implemented early enough, could only be tested when the
dataset was prepared. Finally, the system restrictions posed the
biggest obstacles to this effort, underlining the necessity to migrate
the module to the Cloud Cluster in order to evaluate its
performance on large-scale data.

6. CONCLUSIONS
The IOPM module includes a stand-alone module that expands the
underlying pricing-scheme and is integrated with the optimal
pricing solution with the price-demand model. We presented the
IOPM problem formulation and solution through non-linear
optimization procedure. We described the method adopted to draw
representative samples from the cloud DMBS in order to construct
a dataset suitable for fitting and perform Data Regression. We

further demonstrated how the module was integrated into the
existing implementation. Our short-term goal is to elaborate on the
parameter estimation under a high-performance platform that will
enable a large-scale optimization process.

7. REFERENCES

[1] A. Sulistion, K. Kyong Hoon and R. Buya. Using revenue

management to determine pricing of reservation. In IEEE e-
Scence, pages 396-405,2007.

[2] Amir Globerson, Naftali Tishby: Sufficient Dimensionality
Reduction. Journal of Machine Learning Research (JMLR)
3:1307-1331 (2003).

[3] Andreas Klimke and Barbara Wohlmuth and Universität
Stuttgart Extending Matlab with Java – Hanselman, Littlefield
(2001).

[4] Carmen G. Moles, Pedro Mendes and Julio R. Banga
Parameter Estimation in Biochemical Pathways: A
Comparison of Global Optimization Methods, Genome
Research CSH Press (2003)

[5] Christos Michalakelis, et al Development of a demand model
for the simultaneous estimation of the interaction between a
product's diffusion and price: an application to
telecommunications, CTTE (2007)

[6] F Wood, K Esbensen, P Geladi,Principal component analysis
- Chemometr. Intel. Lab. Syst (1987).

[7] Frenkel Dea, Introduction to Monte Carlo Methods,
Computational Soft Matter, John Von Neumann Institute for
Computing, Julich, NIC Series, vol 23 (2004).

[8] Hong Guo, Wen-Chi Hou, Feng Yan, Qiang Zhu: A
Metropolis Sampling Method for Drawing Representative
Samples from Large Databases. SSDBM (2004)

[9] Isabel Beichl, Francis Sullivan: The Other Monte Carlo
Method. Computing in Science and Engineering 8(2): 42-47
(2006).

[10] Jolliffe I.T. Principal Component Analysis, Series: Springer
Series in Statistics, 2nd ed., Springer, NY, 2002, XXIX, 487
p. 28 illus. ISBN 978-0-387-95442-4

[11] Kenneth Holmström: Solving Applied Optimization
Problems Using Tomlab , Proceedings from MATHTOOLS
'99, the 2nd International Conference on Tools for
Mathematical Modeling, St. Petersburg, Russia (1999).

[12] Powell, Warren B, Approximate Dynamic Programming:
Solving the Curses of Dimensionality. Wiley, ISBN
0470171553 (2007).

[13] Regula, G.1, Ledergerber, U et al, Using Monte Carlo
simulation to optimize sampling strategies for monitoring
antimicrobial resistance (2006)

[14] Tanu Malik, Randal C. Burns and Amitabh Chaudhary. A
financial option based grid resources pricing model: Towards
an equilibrium between service quality for user and
profitability for service providers. In Advances of Grid and
Pervasise Computing, pages 13-24, 2009

[15] Verena Kantere, Debabrata Dash, Anastasia Ailamaki,
Optimal service pricing for a cloud cache

[16] Wolfgang Förstner: Reliability analysis of parameter
estimation in linear models with applications to mensuration

problems in computer vision. Computer Vision, Graphics, and
Image Processing (CVGIP) 40(3):273-310 (1987)

[17] Sun Microsystems, Inc. Java Native Interface, 2002.
http://java.sun.com/j2se/1.4.1/docs/guide/jni/index.html [cited
April 10, 2003].

[18] http://tomopt.com/

[19] Albert Tarantola, Inverse Problem Theory and Methods for
Model Parameter Estimation, SIAM (2005)

[20] R. H. Byrd, N. I. M. Gould, J. Nocedal, and R. A. Waltz. An
algorithm for nonlinear optimization using linear

programming and equality constrained subproblems.
Mathematical Programming, Series B, 100(1):27–48, (2004).

[21] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller. "Equation of state calculation by fast
computing machines." Journal of Chemical Physics,
21(6):1087–1092, 1953.

[22] http://www.aimms.com/features/solvers/conopt
[23] http://www.sbsi-sol-optimize.com/asp/sol_product_snopt.htm

8. APPENDIX

Appendix Figure 1: Price-Demand overview for all structures

