Physical Database Designers: A Comparison of Robustness
(Fall Semester Sep-Dec 2010)

Keywords: Physical Design, Robustness

Problem: Database Management Systems (DBMSs) have become extremely popular the last decades and they support a large number of different applications. Those applications along with the explosion of available data have increased the importance of physical design since the selection of the correct physical structures (e.g. indexes, partitions and materialized views) may improve the query execution performance by orders of magnitude. Commercial DBMS vendors have recognized the problem and they offer automated physical design tools in their products [1][9]. Those tools use what-if interfaces [5] to simulate the presence of different physical structures and recommend physical designs that minimize the estimated execution time for a given workload. However, there is not a clear method of comparing the quality of the proposed solutions [2]. Additionally, considering only the estimated execution time can lead to physical designs that are not robust due to induced error from the query optimizer’s estimations and changes in the workload [4].

Project: In this project, a method of evaluating the robustness of physical designers’ recommendations is proposed. The robustness of different physical designs is measured using template queries from the standard TPC-H benchmark. Experiments will be performed using DB2, MS SQL Server and PostgreSQL. The study plan for this project is the following:
1. Literature review of relevant papers in the area of Automated Physical Design.
2. Configuration of different DBMSs.

Supervisor: Prof. Anastasia Ailamaki, anastasia.ailamaki@epfl.ch

Responsible collaborator: Ioannis Alagiannis, ioannis.alagiannis@epfl.ch

Duration: 4 months

References