CHAPTER 1

The Roots

The first five papers in this book represent the roots of
relational database systems. Of course, Ted Codd gets
most of the credit for focusing attention on the relagign-
al model of data with his pioneering paper in CACM in
June 1970, which we have chosen to be the kickoff arti-
cle in this volume. This paper started a heated contro-
versy in all ACM SIGFIDET (now SIGMOD) meetings
from 1971 onward between two groups of people. On
one side were members of the COBOL/CODASYL
camp who had recently written their proposal for a stan-
dard network database system. This document, referred
to as the “DBTG Report” [DBTG71], suggested a net-
work data model containing records and sets with a syn-
tax closely aligned with COBOL and a low-level navi-
gational interface. Perhaps the best nontechnical exposi-
tion of the point of view of the DBTG camp was the
1973 Turing Award paper [BACH73] written by Charlie
Bachman, the main developer of IDS, a Honeywell
DBMS writtén in the 1960s from which the DBTG
Report borrowed heavily. On the other side were Ted
Codd and virtually all academic researchers lauding the
merits of the relational model.

The positions of the two camps divided approxi-
mately along the following lines.

COBOL/CODASYL camp:

1. The relational model is too mathematical. No
mere mortal programmer will be able to under-
stand your newfangled languages.

2. Even if you can get programmers to learn your
new languages, you won’t be able to build an
efficient implementation of them.

3. On-line transactiontprocessing applications want
to do record-oriented operations.

Relational camp:

1. Nothing as complicated as the DBTG proposal can
possibly be the right way to do data management.

2. Any set-oriented query is too hard to program
using the DBTG data manipulation language.

3. The CODASYL model has no formal underpin-
ning with which to define the semantics of the
complex operations in the model.

This argument came to a head -at the 1975
ACM/SIGMOD Conference in Ann Arbor, Michigan,
where Ted Codd and two seconds squared off against
Charlie Bachman and two seconds in what was publi-
cized as “The Great Debate.”

The debate was significant in that it highlighted yet
once more that the two camps could not talk to each
other in terms the other could understand. Codd gave a
formal treatment of how the CODASYL people could
best make the semantics of their model less arbitrary.
Bachman then argued that the CODASYL model was
almost no different from the relational model. Both talks
and the resulting discussion left the audience more con-
fused at the end of the debate than at the beginning.

In the latter half of the 1970s, the two camps began
to understand each other and the discussion became
more focused. At the same time, however, interest in
CODASYL systems began to decline based, in our
opinion, on two events of the late 1970s. First, easier-to-
use relational languages such as QUEL [HELD75] and
SQL [CHAM76] were devised to blunt the criticism that
earlier relational languages (specifically, Codd’s rela-
tional calculus [CODD71] and algebra [CODD72])
were too mathematical. Second, prototype relational
systems began to appear and prove that implementations
could be done with reasonable efficiency.



2 CHAPTER 1 / The Roots

The two most widely used prototypes were
System R and INGRES, and they helped shape a fair
amount of the history that followed. Under the able
direction of Frank King, a group of about 15
researchers at the IBM Research Laboratory in San
Jose, California, built System R from about 1974 to
1978. Although it was a significant effort by a large
group of people, the influence of Jim Gray, Franco
Putzolu, and Irv Traiger on the lower half of the sys-
tem (the RSS level) is noteworthy, whereas the RDS
level -shows the influence of Mort Astrahan, Don
Chamberlin, and Pat Selinger. Fifty miles away, a
pickup team of Berkeley students built INGRES under
the direction of Mike Stonebraker and Eugene Wong
from 1973 to 1977. The next two papers in this chap-
ter present the status of these two systems in 1976.
After both systems were more or less finished, excel-
lent retrospectives were written by both groups on the
good and bad points of their designs. The final two
papers in this chapter present these retrospections.

We wish to use the rest of this introduction to
make a collection of comments about these prototypes.
The reader of the “before” and “after” versions should
carefully note what each group admitted to screwing
up (e.g., poor integration between the RDS and RSS in
System R and the compile time structure in INGRES).
The INGRES system was constructed as an interpreter
because of inexperience on the part of the designers. In
System R, links and images exist at the RSS level, but
the RDS level does not allow users to take advantage
of them. The apparent reason is that System R devel-
opment was organized into two teams. The RSS team
was farther ahead, and its facilities were defined first.
According to Jim Gray, links were put into the RSS in
case it would be required at some future time to sup-
port a network (DBTG) or hierarchical (IMS) inter-
face. The RDS group decided later on to ignore links
and images in their initial implementation because
they made the query optimization problem harder.

In addition, both retrospections are less than com-
pletely candid about their failures. For example, the
resovery management scheme in System R based on
shadow pages was declared a failure in another paper
[GMAYB1]. The absence of hashing is also widely
» 844 substantial mistake. In addition, achiev-
parformance seemed to require wizardry in
j-of system parameters [DEWIST]. Lastly,
poid lile autention o presentation services
e end user only a very primitive query capa-
aalied the user friendly interface (UFD),

YRR

On the other hand, the INGRES designers do not
point out several shortcuts they took. They used the
UNIX file system even though there is no way to guar-
antee crash recovery services in this environment. The
System R designers elected to write their own file sys-
tem when faced with an unusable file manager.
Moreover, they chose simplistic implementations for
both locking and crash recovery that were clearly naive.

The reader should also observe what facilities are
discussed in the “before™ paper that the “after” paper is
notably silent about (e.g., triggers in System R). In
addition, readers should notice the dominance of the
16-bit architecture of the PDP-11 on the INGRES sys-
tem and the amount of effort that was expended to deal
with it. This pain and suffering has completely van-
ished from the computer scene a scant 15 years later.

Another comment is the tremendous commercial
significance that these systems (especially System R)
have had over the years. Kapali Eswaren left the
System R project to form his own company, ESVAL,
which built a commercial version of System R. Later,
the ESVAL code became the basis for the Hewlett-
Packard ALLBASE system as well as for IDMS/SQL
from Cullinet. In addition, Larry Ellison started Oracle
Corporation and independently implemented the pub-
lished external specifications for System R. Lastly,
with some rewriting, DB2 and SQL/DS are derivatives
of the original System R prototype.

On the INGRES side of the ledger, INGRES
Corporation (now part of Computer Associates) and
Computer Associates both commercially exploited the
public domain University of California prototype. In
addition, Bob Epstein left the INGRES project in 1979
wrjoin Britton-Lee (now part of NCR), helping to
build the IDM software. Then he formed a second gen-
eration relational start-up, Sybase, to focus on the
transaction processing marketplace.

As a result, much of the current commercial land-
scape shows the influence of these systems. In gener-
al, this influence is very positive. For example, the
query optimization architecture and optimization tech-
niques of System R are generally lauded and form the
basis for the algorithms in most commercial systems.
The cleanliness of QUEL and the query modification
algorithms for views, protection, and integrity control
get good marks for INGRES.

However, some of the legacy is less exemplary. For
example, because of the position of IBM, the program-
ming-level interface to SQL will be an intergalactic stan-
dard for a very long time. SQL and its embedding are not




very elegant, and Date clearly explains in [DATESS5] the
language mistakes that were made. Second, neither
INGRES nor System R was particularly faithful to the
relational model. Both systems allow you to perpetrate
the cardinal sin—to create a relation with duplicate tuples
in it. Moreover, System R would carefully retain the cor-
rect number of duplicates during join processing, so a
willing user could build semantics into the number of
duplicate records. This was one of the “features” of the
DBTG data model that relational advocates most
despised. Both systems failed to implement the notion of
“domains” or even primary keys. Hence, commercial sys-
tems have been slow to construct facilities in these areas.
We want to comment on two little-known facts
that might have dramatically altered the events of the
last several years. First, IBM initially attempted to
build an SQL interface on top of IMS. This project,
code-named Eagle, would have allowed DL/1zand
SQL to be used interchangeably to express DBMS
commands for a single database. This effort was aban-
doned in the late 1970s because of semantic difficul-
ties in building an SQL-to-DL/1 translator. If Eagle
had been successful, then the resulting DBMS land-
scape might have been significantly different. Then
IBM decided to build a separate relational system.
However, they still had a choice of which approach to
convert into a production system. Besides System R,
prototypes were available for QBE [ZLOO75] and
UDL [DATET76). Although QBE was designed as an
end-user interface and would be very difficult to call
from PL/1, UDL offered a number of advantages over
SQL, including a clean coupling with PL/1. A very dif-
ferent collection of events would have unfolded if IBM
had chosen to exploit one of the other competitors.
We close this chapter with another suggestion for
additional reading. It appears that Ted Codd has been
blessed as “the keeper of the faith” and has the indi-
vidual initiative to redefine the relational model when-
ever appropriate. Hence, you can think of four differ-
ent versions of the model:
o Version 1—defined by the 1970 CACM paper
« Version 2—defined by Codd’s 1981 Turing
Award paper [CODD82]
« Version 3—defined by Codd’s 12 rules and scor-
ing system [CODD85]
« Version 4—defined by Codd’s book [CODD90]
The interested reader is advised to read all four
and consider the evolution of the model over time.
At the current time (1997), the relational model is
considered the traditional mainstream data model, and

CHAPTER 1 / The Roots 3

the network and hierarchical models have fallen com-
pletely from favor. Moreover, the relational model is
widely criticized for its inability to meet the needs of
users outside of business data processing applications.
Business requirements in this area have spawned both
object-oriented and object-relational DBMSs. In
Chapter 6, we will consider both of these new approach-
es. Here, we merely observe that object-relational
DBMSs are simply an extension of the relational model
to better manage complex data. As such, it is an exam-
ple of how the relational model has further evolved dur-
ing the 1990s.

REFERENCES

[BACHT73] Bachman, C., “The Programmer as
Navigator,” CACM 16(11): 635-658 (1973).
Chamberlin, D., et al., “SEQUEL 2: A
Unified Approach to Data Definition,
Manipulation and Control,” IBM Journal
of Research and Development, 20(6):
560-575 (1976).

Codd, E., “A Database Sublanguage
Founded on the Relational Calculus,” in
Proceedings of 1971 ACM-SIGFIDET
Workshop on Data Description, Access and
Control, San Diego, CA, November 1971.

Codd, E., “Relational Completeness of
Database Sublanguages,” in Courant
Computer Science Symposium 6,
Englewood Cliffs, NJ: Prentice Hall, 1972.

Codd, E., “Relational Database: A
Practical Foundation for Productivity,”
CACM 25(2): 109-1 17 (1982).

Codd, E., “Is Your DBMS Really
Relational,” Computer World, October 14,
1985.

Codd, E., The Relational Model for
Database Managemeni—Version 2,
Reading, MA: Addison-Wesley, 1990.
Date, C., “An Architecture for High-Level
Language Database Extensions,” in
Proceedings of the 1976 ACM-SIGMOD
Conference on Management of Data, San
Jose, CA, June 1976.

Date, C., “A Critique of SQL,” SIGMOD
RECORD 14(3): 8-54 (1985).

Database Task Group, “April 1971 Report”
ACM, New York 1971.

[CHAMT76]

[CODD71]

[CODD72]

[CODDS82]

(CODDS5]

[CODDY0]

[DATE76}

[DATES5]

[DBTG71]



4 CHAPTER 1 / The Roots

[DEWIST7]

(GRAY81]

Dewitt, D, et al., “A Single-User [HELD75]
Performance Evaluation of the Teradata

Database Machine,” MCC Technical Report

DB-081-87, MCC, Austin, TX (1987).

Gray, 1., et al., “The Recovery Manager of [ZLOO75]
the System R Database Manager,” ACM
Computing Surveys 13(2) 223-243 (1981).

N

Held, G., et al., “INGRES—A Relational
Database System,” in Proceedings of 1975
National Computer Conference, Anaheim,
CA, June 1975.

Zloof, M., “Query by Example,” in

Proceedings of 1975 National Computer
Conference, Anaheim, CA, June 1975.



